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Abstract. locproj estimates linear and nonlinear Impulse Response Functions
(IRF) based on the local projections methodology first proposed by Jordà (2005).
The procedure allows for the easy implementation of several options used in the
growing literature of local projections. It reports the IRF, together with its stan-
dard error and confidence interval, as an output matrix and through an IRF graph.
It allows for choosing different estimation methods for both time series and panel
data, including instrumental variables and quantile regressions. It also allows for
the use of marginal effects instead of regression coefficients, which is highly con-
venient when the response variable is binary and the user wants to estimate the
response as a probability. We also show some cases in which it can be used to
estimate an Event Study (DiD) regression. The user can easily choose different
options for the desired IRF graph, as well as several other options to save and use
the results. The module also includes a post-estimation command called lpgraph
that can plot IRFs estimated by different models.

Keywords: locproj, lpgraph, local projection, IRFs, quantile regression, instru-
mental variables, D-i-D, event study, margins, binary dependent variable

1 Introduction

Local projections (LPs) have rapidly gained prominence in macroeconomic and applied
econometrics literature due to their flexibility, robustness, and intuitive appeal in esti-
mating impulse response functions (IRF). They have been employed in a wide variety of
empirical applications, ranging from evaluating monetary interventions and fiscal con-
solidations to assessing the macroeconomic effects of financial crises, climate shocks,
and carbon taxes.

Despite their growing popularity and broad range of applications, until recently there
was no dedicated Stata package for estimating impulse responses using LPs. This may
be partly attributed to the perceived simplicity of LP computation, which—depending
on the modeling assumptions—involves estimating a series of OLS regressions. However,
implementing LPs in practice requires a sequence of iterative steps, which can become
cumbersome, particularly when exploring various methodological choices or model spec-
ifications.

This paper formally introduces the package locproj1, which enables the estimation

1. The package LOCPROJ was presented in the US Stata Conference at Stanford in July 2023 and it

locproj



2 locproj

of linear and nonlinear IRF, focusing on describing how to implement some of the
methodological alternatives used in the fast-growing LP literature that are not available
in any other automatized procedure, either in Stata or elsewhere.

Starting with version 18.0, Stata featured its own native commands called lpirf,
followed by the command ivlpirf in Stata 19.0. Estimation in the former assumes
that the shock is part of a system of equations, which offers some advantages but also
narrows the methodological alternatives. Neither command allows for the use of panel
data methods. locproj relies on the assumption that the shock of interest is exogenous,
has been previously identified, or that a set of instruments is available otherwise, which
simplifies the estimation and opens up a wider set of methodological possibilities.

Dube et al. (2025) have also developed a new Stata command lpdid based on their
proposed LP approach to Difference-in-Differences Event Studies. Although lpdid is
more general and can estimate more cases within the DiD framework, locproj can be
used in a wider range of LP applications beyond DiD. Moreover, we show how locproj

can also be used in some particular cases to compute the LP-DID estimator.

Outside of Stata, the R-package lpirfs (Adammer (2019)) also allows the use of panel
data and of instrumental variables methods and nonlinear options. However, locproj
has a much larger set of methodological options and capabilities, some of them based
on the higher flexibility of Stata for handling factor variables and time-series operators.
locproj also has a wide range of tools that facilitate the analysis to the researcher that
are not available in either Stata nor the R packages.

The locproj package also includes a post-estimation command called lpgraph that
plots the results of previously estimated IRFs of more than one model into one single
graph that can include up to four different IRFs, which is highly convenient when we
want to compare the magnitude and the dynamics of the different IRFs, since they share
the same axis.

lpgraph is a post-estimation command, and it uses the IRF results saved as variables
by the command locproj. The command lpgraph can also be used to combine IRF
results from other estimation methods, such as VAR, SVAR, arima, etc., as long as the
results of those commands are saved with the same name structure in which locproj

saves the IRFs results.

In the following section, we briefly discuss several methodological possibilities avail-
able in locproj such as:

• Choosing the best transformation: levels, differences or long-differences

• Panel data

• Instrumental variables

• Nonlinearities

has been available in the Repec-Ideas Stata Repository since May the same year.
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• State-dependent LP

• Binary dependent variable

• Quantile LP

• Starting periods different than zero

• Difference-in-Differences & event studies

Then, in section 3 and section 4, we give a more detailed description of the syntax
and options for the locproj command and the lpgraph command, respectively. Finally,
in section 5 we illustrate usage of the package in several examples covering most of the
topics discussed in section 2.

2 Methods

Following Jordà and Taylor (2024), we are interested in characterizing how an interven-
tion today affects the average outcome at some time in the future relative to a baseline
of no-intervention. Let yt denote an outcome variable of interest, st the policy inter-
vention variable, and let xt denote a vector of controls variables. Formally, we define
an impulse response as:

Rs→h = E[yt+h|st = s0 + δ;xt]− E[yt+h|st = s0;xt]; h = 0, 1, ...,H, (1)

where s0 denotes the value of the variable st without intervention and δ is the size of
the intervention, which is commonly normalized so that δ = 1. This allows to omit δ
from the notation and write Rs→h(h, 1) ≡ Rs→h(h) ≡ Rsh(h).

According to Jordà (2005), the local projection or LP of yt+h on st can be estimated
with the following regressions:

yt+h = αh + βhst + γ′
hxt + νt+h; h = 0, 1, ...,H (2)

With Rsh(h) = βh. Initially, we assume that E[st|νt+h] = 0, i.e. that st is exogenous.

Estimating the IRF through local projections is straightforward in most cases since
βh can be estimated directly through OLS. The usual steps for estimating an IRF
through local projections imply:

1. Define the length of the estimation horizon (H) and the type of transformation of
the dependent variable, usually:

• Levels vs logarithms

• Levels vs differences

• differences vs log-differences

• Levels vs. cumulative (long) differences
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2. Construct a loop that runs the h-steps regressions using the desired estimation
method and specification.

3. Extract and save the h-step estimated coefficient and standard error of the “shock”
variable (or possibly more than one coefficient in nonlinear cases).

4. Construct confidence intervals.

5. Graph the IRF.

The command locproj automates all these necessary steps, allowing the user to focus
on choosing the best specification and analyzing the results. In the rest of this section
we review the main methodological options where locproj can be more useful.

2.1 Choosing the best transformation: Levels, differences, or long-
differences

In practice we have several choices of LP specification to estimate impulse responses.
In a stationary case, we can choose between levels or long-differences, whereas we can
choose to differentiate if our dependent variable is non-stationary or if we are simply
interested in analyzing the short-term evolution of the IRF. We also can choose between
levels or taking logarithm before differentiating.

• Level: yt+h = αL
h + βL

h st + γ′L
h yt−1 + νt+h

• Differences: yt+h − yt+h−1 = αD
h + βD

h st + γ′D
h (yt−1 − yt−2) + νt+h

• Long-differences: yt+h − yt−1 = αLD
h + βLD

h st + γ′LD
h (yt−1 − yt−2) + νt+h

Moreover, locproj also includes the option of taking logs before differencing. Usu-
ally, the loop may require generating some new variables, for instance, the dependent
variable at the different forecast steps or just the simple or log difference. For every
transformation option, the command locproj generates all the necessary new (tempo-
rary) variables according to each transformation option. It also generates temporary
variables with the corresponding transformation of the dependent variable needed in
case the user wants to include lags of the dependent variable that are consistent with
the chosen transformation.

2.2 Panel data

One of the key advantages of LPs is that they can be immediately extended to a panel
data setting, which, in addition to having potentially more observations with which to
increase the precision of the estimates, opens a large set of methodological possibilities
like different types of nonlinearities, estimating the IRF of the probability of an event
or estimating a difference-in-differences analysis. A typical panel data local projection
could be specified as:
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yi,t+h = αi,h + µt,h + βhsi,t + γ′
hxi,t + νi,t+h (3)

where αi,h denotes (cross-section) random or fixed effects and µt,h denotes time-
fixed effects. locproj can adjust almost any panel data estimation method available
in Stata, and it automatically switches from OLS (reg) to GLS (xtreg) as the default
estimation method if the dataset has been defined with xtset.

The use of different robust standard errors estimators to adjust for heteroskedas-
ticity and autocorrelation are highly recommended and supported by most panel data
commands in Stata and thus in locproj.

2.3 Instrumental variables

Identification of LPs via the use of instrumental variables is a well established method,
referred to as LP-IV (since its first appearance in Jordà et al. (2015)). As is usually the
case with instrumental variables, conditions must be satisfied. One will need a relevance
assumption (that is, the instrument is correlated with the endogenous variable) and an
exogeneity assumption (the instrument is uncorrelated with the residuals).

locproj allows the use of different instrumental variable methods currently available
in Stata such as ivregress, xtivreg and ivqregress.

One advantage of locproj is that it offers the option of performing and displaying
the results of some of the tests that are available after using the commands ivregress
and ivqregress. For instance, we can test for overidentifying restrictions and endo-
geneity after every step of the LP.

2.4 Nonlinearities

The possibilities of different types of nonlinearities in local projections are plentiful and
the applications are growing quickly. The most basic case is when the effect of the shock
is nonlinear in the sense that it can be different at different levels of the shock variable,
such as when we include a quadratic term:

yt+h = αh + βa
hst + βb

hs
2
t + γ′

hxt + νt+h (4)

In this case the IRF would be Rsh(h) = βa
h + βb

h if the size of the shock is normalized
to one, i.e. δ = 1, and the initial shock level is zero, i.e. s0 = 0. Using (4) in (1), we
get that in general the response depends on the initial level of the variable, s0, and the
size of the intervention, δ, in the following way:

Rsh(h) = βa
h(s0 + δ) + βb

h(s0 + δ)2 + γ′
hxt − [βa

h(s0) + βb
h(s0)

2 + γ′
hxt)]

Rsh(h) = βa
hδ + 2βb

hs0δ + βb
hδ

2 (5)
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2.5 State-dependent LPs

One of the most common nonlinearities is that of a state-dependent LP, when the shock
interacts with another variable that defines a state, which is usually characterized by
a binary (dummy) variable Dt ∈ {0, 1} that defines whether a state is active or not.
Depending on how we would want to describe the impact, if either as a difference with
respect to the other state or as an absolute impact at each one of the two states, then
we can specify the estimation as either (6) or as (7) respectively.

yt+h = αh + βa
hst + βb

hDtst + γ′
hxt + νt+h (6)

yt+h = αh + βa
h(Dt = 0)st + βb

h(Dt = 1)st + γ′
hxt + νt+h (7)

If the IRF is expressed as a difference it would be given by Rsh(h) = βb
h from equation

(6) or if the IRF is expressed as the total impact, it would be given by Rsh(h) = βa
h+βb

h

from equation (6) or by Rsh(h) = βb
h from equation (7).

Obviously, there could be more than two states, or we can even interact our shock
variable with a continuous variable that alters the reaction of our outcome variable.

yt+h = αh + βa
hst + βb

hst ∗ zt + γ′
hxt + νt+h (8)

In this case the IRF would be given by Rsh(h) = βa
h + βb

h if the size of the shock and
the interaction variable are normalized. In a more general way,

Rsh(h) = βa
hδ + βb

hδ ∗ θ (9)

where δ is the size of the shock and we want to evaluate the IRF at zt = θ

2.6 Binary dependent variable

Local projections can also be estimated when the outcome variable is binary (Barattieri
and Cacciatore (2023)) and the user wants to estimate the response as a probability. As
in other cases of nonlinearities, the response depends on the level of the shock and of
other variables. Therefore, it is easier to rely on the existing Stata command margins,
more specifically, using the option of obtaining margins of derivatives of responses (a.k.a.
marginal effects).

In this case, a practitioner may be interested in the probability of an outcome at
some point in the future if there is a shock to a variable today. Then Equation 1 could
be redefined as follows:

Rs→h = P [yt+h = 1|st = s0 + δ;xt]− P [yt+h = 1|st = s0;xt]; h = 0, 1, ...,H, (10)

This IRF could be estimated through LP with simple logit or probit models both in
a time-series or a panel-data framework. locproj can accommodate several commands
like probit, logit, xtprobit, xtlogit, oprobit, ologit, etc. Moreover, locproj has
the option of expressing the IRF as the response of the probability of a positive outcome,
exactly as expressed in 10, using the Stata command margins.
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2.7 Quantile local projections

One possibility that has been explored in Makabe et al. (2022) and Jordà et al. (2022))
is that a shock may have no visible effects on the average outcome, but it may have
considerable impact the tails of its distribution.

The approach to calculate quantile local projections is parallel to the way local
projections are computed at the mean, as in equation (2). The only difference is that
we are now dealing with a nonlinear model so the marginal effect of a change in the
shock has to be evaluated accordingly.

In the case of locproj we only need to change the estimation method to qreg, and
we can also use the IV case, ivqreg.

One advantage of locproj is that it has been adapted so that we can include lags
of the dependent variable and the shock variable automatically even if the estimat-
ing method we are using does not allow time-series operators, as is the case with the
commands qreg and ivqreg.

The command lpgraph is also well-suited to estimating quantile LP since normally
we want to estimate and compare multiple IRFs at different moments of the distribution.

2.8 Starting periods different than zero

Throughout this section, we have specified that the estimation horizon h starts at the
same moment that the shock occurs, i.e at h = 0. But, more generally, we can assume
that the response of our outcome variable starts at a period before the initial shock,
in which case we could have h < 0. This can be particularly useful when we want to
evaluate whether there are anticipated responses or if we want to test the parallel trends
hypothesis in a Difference-in-Differences estimation.

locproj allows having initial steps different from zero, including negative starting
horizons, automatically adjusting the output and the way in which the lags of the
dependent variable are included. locproj also adjusts the output when the shock
variable is included with a lag, which happens when we assume that the impact on the
outcome variable shows up with a delay.

In the cases of negative horizons and long-differences (cumulative), locproj also
automatically adjusts the way in which the lags of the dependent variable are included
if they are required by the user, since the lags of the dependent variable have to obviously
predate the first period included in the calculation of the long-difference.

2.9 Difference-in-Differences & event studies

One of the most interesting applications of LP is the possibility of extending the D-i-D
estimator to cases when there are more than two periods and two groups. In such cases,
treatment effects may vary across groups depending on when treatment is received (i.e.,
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they are heterogeneous) and the effects may also change over time after treatment (i.e.,
they are dynamic). Dube et al. (2025) show that most of the extensions to the basic
two period, two groups setting can be accommodated with a simple modification of an
LP estimator under standard assumptions.

Dube et al. (2025) have proposed a general estimator called LP-DiD estimator that
can be expressed as:

yi,t+h − yi,t−1 = δth + βh∆si,t +

p∑
j=1

ρij∆yi,t−j + γhxi,t + νi,t+h, (11)

where δth are time fixed effects and where the estimation sample is restricted to
observations that correspond to either ∆si,t = 1 (newly treated units), or si,t+h = 0
(not yet treated units) to ensure ”clean controls”. Dube et al. (2025) have also created
and shared the Stata command lpdid.

Although lpdid is currently the most appropriate command for estimating the Dube
et al. (2025) estimator, locproj can be used perfectly to estimate the D-i-D cases of only
two groups (treated and control), more than two periods (t > 2), and when treatment
occurs at the exact same period for all treated individuals. Under those assumptions and
given its flexibility, locproj is a convenient alternative to other event study estimators.

The population coefficient βLP
h from an LP regression corresponds exactly to the

estimand for the dynamic ATT h periods after treatment, which is a particular case of
11.

In cases where treatment occurs at the same period t = t∗, we can estimate the
following:

yi,t∗+h − yi,t∗−1 = δh + βLP
h ∆si,t∗ + νi,t∗+h, h = −Q, .., 0, ...H (12)

where Q > 0.

The specification in Equation (12) does not include individual fixed effects, since
they are eliminated by long-differencing. We can also add control variables and lags of
the dependent variable as in Equation 11.

Later on, in the Examples section, we will show that estimating Equation 12 with
locproj is equivalent to estimating the common Event Study approach with treatment
starting at t = q for all units, which following Wooldridge (2021) would be given by:

yi,t = η + λDi +

q−2∑
s=1

γs(Di ∗ fst) +
T∑

s=q

δs(Di ∗ fst) + θ2f2t + ...θT fTt + Uit (13)

Where f1t, f2t, ..., fTt are time dummies for each period, Di = 1 if unit i is ever treated,
and the coefficient on Di ∗f(q−1)t (period just before treatment) is normalized to zero.
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3 The locproj command

locproj reports the IRF, together with its standard error and confidence interval, as an
output matrix and through an IRF graph. The user can easily choose different options
for the desired IRF graph, as well as other options to save and use the results.

locproj uses the Stata command lincom to estimate the response to the shock
variable or variables, allowing to estimate responses to linear combinations of variables,
including interactions with factor or continuous variables. Importantly, it also allows for
the use of marginal effects instead of regression coefficients, which is highly convenient
when the response variable is binary and the user wants to estimate the response as
a probability. In the latter case, locproj makes use of the Stata command margins,
which could also facilitate the estimation of responses when the shock corresponds to
an interaction of variables (factor or continuous) instead of just a single variable.

The options allow defining the desired specification in a fully automatic or in a more
explicit way, with many alternatives in between. If the user chooses the automatic
specification, the syntax is very close to a typical regression command in Stata, with
the only restriction that locproj interprets the variable that corresponds to the shock
(impulse) as the one just after the dependent variable or its lagged terms, and only that
one variable represents the shock.

Alternatively, the user can choose to explicitly define the shock variable (or vari-
ables), the number of lags of the shock, the number of lags of the dependent variable,
and the control variables. As mentioned before, the user can play with alternatives
between the fully automatic or the fully explicit, depending on which option is easier
or more convenient to use.

The explicit option is recommended when the shock should include more than one
variable, for instance, an additional nonlinear term, or an interaction with another
variable. Moreover, if the shock includes an interaction with a categorical variable,
then we must use one of the options lcs() or margins, unless the categorical variable
is treated as continuous.

The locproj command has the following syntax:

Automatic Specification (Shock and Lags)

locproj depvar shock
[
depvar lagged-terms

] [
shock lagged-terms

] [
controls

] [
if

][
in

] [
weight

] [
, hor(numlist integer) lcs(string) lcopt(string)

fcontrols(varlist) instr(string) transf(string) met(string) hopt(string)

conf(numlist integer) noisily stats saveirf irfname(string) fact(real)

margins mrfvar(varlist) mrpred(string) mropt(string) nograph title(string)

label(string) zero lcolor(string) ttitle(string) grname(string)

grsave(string) as(string) gropt(string) ivtest(string) model options
]



10 locproj

Explicit Specification (Shock and Lags)

locproj depvar
[
if

] [
in

] [
weight

] [
, hor(numlist integer) shock(varlist)

controls(varlist) ylags(integer) slags(integer) lcs(string) lcopt(string)

fcontrols(varlist) instr(string) transf(string) met(string) hopt(string)

conf(numlist integer) noisily stats saveirf irfname(string) fact(real)

margins mrfvar(varlist) mrpred(string) mropt(string) nograph title(string)

label(string) zero lcolor(string) ttitle(string) grname(string)

grsave(string) as(string) gropt(string) ivtest(string) model options
]

Model specification options

hor(numlist integer) Specifies the number of steps or horizon length for the IRF. The
initial horizon could be negative. It can be specified either as a range (e.g. hor(0/6)
or hor(-3/6)), or just as the final horizon period (e.g. hor(6)) in which case the
command assumes the horizon starts at period 0 and ends in period 6. The default
horizon range is hor = 0, ..., 5 if nothing is specified.

shock(varlist) Allows to explicitly define the variable or variables that represent the
shock or impulse that will generate the response and the IRF. If this option is not
specified, the command will automatically choose the first variable that is immedi-
ately after the depvar and its lagged terms if they are included in the main varlist.
This option should be used when the desired shock includes more than one variable,
for instance a non-linear term or an interaction term.

lcs(string) Specifies an expression, usually an addition of variables, that defines a
linear combination of variables that represents the desired impulse (shock). This
option should be used when the desired shock includes more than one variable and
the name of one of them is not explicitly included in the syntax variable list, for
instance the constant term cons), or the expansion of an expression that includes
factor variable terms, e.g. 12.code#c.xvar. The expression that should go inside
the parenthesis is analogous to any expression that is tested using the commands
lincom or test.

slags(integer)) Specifies explicitly the number of lags of the shock variable or variables
that should be included in the specification. The lagged terms of the shock could
also be included directly in the main varlist next to the first variable that represents
the shock. If more than one variable is specified through the option shock() then
the specification will include lags of all of them.

ylags(integer)) Specifies explicitly the number of lags of the depvar that should be
included in the specification. The way the lags of the dependent variable are included
changes depending on the type of transformation that is defined by the user through
the option transf().

controls Allows to explicitly define the variable or variables that represent the control
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variables. If this option is not specified, the command simply includes all the vari-
ables that are immediately after the shock variable(s) and its lagged terms if they
are included in the main varlist. The control variables could include any number of
lags, interactions, or any other desired transformations.

fcontrols(varlist) Specifies any control variable(s) that should be included at the
same horizon as the IRF, i.e. that their forecast should be included depending on
the horizon, i.e. fcontrol(t+h) with h = 0...hor.

lcopt(string) Specifies any option available in the command lincom.

Transformation options

transf(string) Specifies the type of transformation that should be applied to the
dependent variable when generating the forecasts that are used for each horizon of
the local projection. The available transformations are the ones in the following list,
and they should be written exactly as they are shown:

1. (level) Levels: It keeps the dependent variable as originally specified and uses its
forecast h periods ahead for each horizon of the IRF, i.e. yt+h with h = 0...hor. It
is the default option in case no transformation is specified. When the option ylags
is specified, it includes lags of the variable in levels, i.e. yt−l with l = 1, ..., ylags

2. (diff) Differences: It uses forecasts of the dependent variable in simple ”differ-
ences”, i.e. yt+h − yt+h−1 with h = 0...hor. When the option ylags() is specified,
it includes lags of the variable in differences, i.e. yt − yt−1 with l = 1, ..., ylags

3. (cmlt) Long-term differences: It uses forecasts of the dependent varible in cumu-
lative differences, i.e. yt+h − yt−1 with h = 0...hor. When the option ylags()
is specified, it includes lags of the variable in differences, i.e. yt − yt−1 with
l = 1, ..., ylags

4. (logs) Logs: It uses forecasts of the logarithm of the dependent varible, i.e.
ln(yt+h) with h = 0...hor. When the option ylags is specified, it includes lags
of the logarithm of the variable, i.e. ln(yt−1) with l = 1, ..., ylags

5. (logs diff) Log-differences: It uses forecasts of the dependent variable in differences
of its natural logarithm, i.e. ln(yt+h) − ln(yt+h−1) with h = 0...hor. When the
option ylags() is specified, it includes lags of the variable in log-differences, i.e.
ln(yt)− ln(yt−1) with l = 1, ..., ylags

6. (logs cmlt) Cumulative log-differences: It uses forecasts of the dependent variable
in cumulative differences of its natural logarithm, i.e. ln(yt+h) − ln(yt−1) with
h = 0...hor. When the option ylags is specified, it includes lags of the variable in
log-differences, i.e.ln(yt)− ln(yt−1) with l = 1, ..., ylags

Marginal effects options
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margins Specifies that the marginal effect of the shock variable is used instead of the
regression coefficients. For simplicity, it only allows using the dydx option of the
command margins.

mrfvar(varlist) Specifies the factor or continuous variable that is interacted with the
shock variable in the specification. This option should be used together with the
shock(varlist) option and the margins option.

mrpred(string) Specifies the option to be used with the predict command to produce
the variable that will be used as the response when using the margins option, e.g.
pr, pc1, pu0, xb. It this option is not specified it uses the default option of the
estimation method being used.

mropt(string) Allows to specify other options available in the command margins that
have not been specified in the previous marginal effect options. See margins for
specific help about using the command margins.

Estimation method options

met(string) Specifies the estimation method. The default is xtreg when using panel data
and reg when using time-series data. Any estimation method with a standard syntax
is allowed. Additionally, the command allows for the use of instrumental variable
commands ivregress and xtivreg and other IV methods with a similar syntax. In
the specific case of ivregress, the user also has to specify the ”estimator” within
the met() option in the following way: met(ivregress estimator), where estimator
could be either on o 2sls, liml or gmm. When any IV method is specified, a list of
instruments must also be provided through the option instr(varlist).

instr(varlist) Specifies the variables to use as instruments for the impulse (shock)
variable when using an instrumental variable method such as ivregress or xtivreg.
The shock variable must be defined as in any of the model specification available
options.

hopt(string) Specifies any methodological option that depends directly on the horizon
of the IRF, i.e. any option that must change with every step/horizon of the IRF
h = 0...hor.

model options Specifies any other estimation options specific to the method used and
not defined elsewhere. If the user wants to specify any methodological option corre-
sponding to the estimation method being used, she only has to enter them alongside
the rest of locproj options.

Displaying results options

noisily If this option is specified, the command displays a regression output for each
horizon. If this option is not specified, the command only returns a matrix with the
IRF, its standard error and the confidence bands.

stats If this option is specified, the command displays a table with the summary
statistics of the estimated regression at each step/horizon. The table includes the
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number of observations, the R-squared or pseudo-R-squared, the F-statistic or Chi2-
statistic, and the p-value (prob) of the respective statistic.

IRFs options

conf(numlist) Specifies one or (max) two confidence levels for calculating the confidence
bands. The default is 95%.

saveirf If this option is specified, the IRF, its standard error, and the confidence bands
are saved as new variables, otherwise no new variables are created. If this option is
specified, the command assigns a default name to the new generated variables.

irfname(string) Specifies a name/prefix for the new IRF variable and the other new
generated variables (standard error and confidence bands).

fact(real) Specifies a factor to scale the IRF. For example, if the user wants to express
the log-difference transformation in percentage terms, this option should be specified
as fact(100).

Graphs options

nograph If this option is specified, a graph is not displayed.

zero If this option is specified, the graph includes a dashed line for the value 0.

title(string) Specifies a title for the IRF graph.

lcolor(string) Specifies a color for the IRF line and the confidence bands.

label(string) Specifies a label for the IRF line in the IRF graph.

ttitle(string) Specifies a name for the time axis in the IRF graph.

grname(string) Specifies a graph name that could be used, for instance, when combining
various graphs.

grsave(string) Specifies a file name and path that should be used to save the IRF
graph on disk.

as(string) Specifies the desired file format of the saved graph.

gropt(string) Specifies any other graph options not defined elsewhere.

Instrumental variable tests

ivtest(string) If this option is specified, the command performs and displays one of
the three post-estimation tests available after using the command ivregress, for each
step/horizon. The three available tests are the endogeneity test (endogenous), first-
stage regression statistics (firststage), and the test of overindentifying restrictions
(overid). The user has to write inside the parenthesis the exact name of the test,
eithe endogenous, firststage or overid, and if necessary/desired, a comma and the
corresponding/available test options.
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Saved Results

locproj stores the following in e():

Matrices
e(irf) Amatrix including the Impulse Response Function (IRF), its standard

error and its confidence interval
e(stats) A matrix including the regression statistics at each step/horizon.

Variables if no name is given
birf estimated impulse response function (IRF)
seirf IRF’s standar error
irfup IRF’s upper confidence interval
irflo IRF’s lower confidence interval
irfup2 second IRF’s upper confidence interval
irflo2 second IRF’s lower confidence interval

Variables if name given to
the IRF is irfname
irfname estimated impulse response function (IRF)
irfname se IRF’s standar error
irfname up IRF’s upper confidence interval
irfname lo IRF’s lower confidence interval
irfname up2 second IRF’s upper confidence interval
irfname lo2 second IRF’s lower confidence interval

4 The lpgraph command

lpgraph plots together the results of previously estimated IRFs of more than one model
in one graph. The graph can include up to four IRFs. It can also create four separate
IRF graphs and combine them in one in the same way as the graph combine.

The first option is convenient when we want a graph that compares the magnitudes of
the different IRFs, since they share the same axis. The second option is more convenient
when you want separate IRF graphs of previously estimated and saved results, and then
combine them into a single graph.

lpgraph has the following syntax:

lpgraph irfname1 irfname2 irfname3 irfname4
[
, hor(numlist integer) separate

zero lab1(string) lab2(string) lab3(string) lab4(string) title(string) ti1(string)

ti2(string) ti3(string) ti4(string) ttitle(string) ytitle(string) lcolor(string)

lc1(string) lc2(string) lc3(string) lc4(string) nolegend grname(string)

grsave(string) as(string) combine(string) other options
]

Options

hor(numlist integer) Specifies the number of steps or horizon length for the IRF. The
initial horizon could be negative. It can be specified either as a range (e.g. hor(0/6)
or hor(-3/6)), or just as the final horizon period (e.g. hor(6)) in which case the
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command assumes the horizon starts at period 0 and ends in period 6. The default
horizon range is hor = 0, ..., 5 if nothing is specified.

separate If this option is specified, each IRF is plotted in a separate graph and then all
are combined in a new graph, in the same way as if we were combining them using
graph combine. The only difference between using the options separate and graph

combine is that lpgraph will first generate the new graphs for each IRF.

zero If this option is specified, the graphs include a dashed line for the value 0.

lab#(string) Specifies a label for each IRF, e.g. lab1 (Label A), lab2 (Label B), lab3
(Label C) and lab4 (Label D).

nolegend Specifies that legends should not be shown. It could be useful if you have
separate graphs and each one of them has a title.

title(string) Specifies a title for the final graph.

ti#(string) Specifies a title for each graph, e.g., ti1(Title A), ti2(Title B), ti3(Title C),
ti4(Title D). These options should be used when using the option separate.

lcolor(string) Specifies a unique color for the IRF line and the confidence bands of
each one of the IRFs.

lc#(string) Specifies a color for the IRF line and confidence bands of each one of the
IRFs (up to four), e.g., lc1(gray), lc2(green), lc3(blue), lc4(red). These options
should be used when using the option separate.

ttitle(string) Specifies a name for the time axis in the IRF graph.

ytitle(string) Specifies a name for the y-axis in the IRF graph.

grname(string) Specifies a graph name that could be used, for instance, when combining
various graphs.

grsave(string) Specifies a file name and path that should be used to save the IRF
graph to a disk.

as(string) Specifies the desired file format of the saved graph.

other options Specifies any other graph options not defined elsewhere. The user only
needs to enter any other graph option not included in the list before alongside the
rest of lpgraph options.

combine(string) Specifies any other options specific to the graph combine command
not defined elsewhere. The user only needs to enter any other graph combine option
not included before inside the option parenthesis.

5 Examples

This section provides several examples of locproj usage and functionality. All the ex-
amples presented here have only a didactic purpose, and are shown to demonstrate how
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to use locproj and lpgraph and not because of their economic or statistical meaning
or relevance. Many of the examples are probably flawed from a statistical point of view.

5.1 Defining the basic options

In examples 5.1.1 to 5.1.8, we are interested in estimating the IRF from a shock to the
variable n (Growth rate of hours worked) into the variable y (Growth rate of real GDP)

. webuse "https://www.stata-press.com/data/r17/usmacro2.dta"

or

. use usmacro2.dta

5.1.1 Specification of shock and control variables

What the automatic vs. explicit specification means is that the user can let locproj
interpret in an automatic way which variables provided on the varlist correspond to the
dependent variable, which one is the shock, which ones are control variables, and also
which ones are just lags of each type of variable. Alternatively, in more complicated
cases, the user can specify all those details in an explicit way using the available options
for such cases.

The simplest local projection specification in which the response variable is y and
the shock variable is n would be (automatic specification):

. use "usmacro2.dta"
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)

. locproj y n

Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

0 0.74401 0.04677 0.65187 0.83615
1 0.36875 0.06193 0.24676 0.49074
2 0.11844 0.06591 -0.01140 0.24827
3 -0.03372 0.06640 -0.16452 0.09707
4 -0.04416 0.06651 -0.17517 0.08686
5 -0.07651 0.06640 -0.20732 0.05430

Which generates the graph in Figure 1:

Which would also be equivalent to the following (explicit specification):

. locproj y, shock(n)

We can also add control variables by adding them after the shock one or using the
option controls. In this case our control variable is r

. locproj y n r

Which would be equivalent to the following (explicit specification):

. locproj y, shock(n) controls(r)
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Figure 1: Impulse Response Function

5.1.2 Specification of lags of dependent variable, shock and control vari-
ables

We might want to include lags of the dependent variable, the shock, or the control
variables. For the dependent variable and the shock, there are explicit options, whereas
for the control variables you need to add them either on the varlist or as additional
variables in the controls() option.

In the following examples, we define that the dependent variable has one lag, that
the shock variable has 2 lags, and that the control variable has 3 lags. They are all
exactly equivalent:

Automatic specification

locproj y l.y n l.n l2.n r l.r l2.r l3.r

locproj y l.y l(0/2).n l(0/3).r

locproj l(0/1).y l(0/2).n l(0/3).r

Explicit or intermediate specification

locproj y n, controls(l.y l2.y l.n l2.n r l.r l2.r l3.r)

locproj y, shock(n) controls(l.y l2.y l.n l2.n r l.r l2.r l3.r)

locproj y, s(n) controls(l(1/2).y l(1/2).n l(0/3).r)

Using the ylags and slags options

locproj y n, ylags(2) slags(2) controls(l(0/3).r)

locproj y, s(n) ylags(2) slags(2) controls(l(0/3).r)
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5.1.3. Specification of horizon length (steps)

We can define the horizon either as an interval or just by specifying the final
step/horizon:

locproj y n, hor(0/12) yl(2) sl(2) c(l(0/2).r)

locproj y n, hor(12) yl(2) sl(2) c(l(0/2).r)

The initial step can be different from zero, either negative or positive, but it always
has to be an integer number. In cases in which the horizon is different from zero,
locproj adjusts the output accordingly, and in the cases of negative horizons, it also
adjusts the way in which the lags of the dependent variable are included.

locproj y n, h(1/12) yl(2) sl(2) c(l(0/2).r)

We can see the output of the example with a negative starting horizon:

. locproj y n, h(-3/9) yl(2) sl(2) c(l(0/2).r)

Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

-3 0.08586 0.07932 -0.07042 0.24214
-2 0.11698 0.06447 -0.01004 0.24401
-1 0.12394 0.06453 -0.00321 0.25108
0 0.80732 0.06441 0.68043 0.93421
1 0.46783 0.08251 0.30528 0.63039
2 0.33490 0.08883 0.15987 0.50993
3 0.02058 0.09435 -0.16531 0.20647
4 0.05464 0.09378 -0.13015 0.23942
5 0.01809 0.09343 -0.16600 0.20218
6 0.02326 0.09510 -0.16414 0.21066
7 0.04984 0.09335 -0.13412 0.23380
8 -0.07028 0.09180 -0.25117 0.11061
9 -0.15789 0.09437 -0.34386 0.02808

Which generates the graph in Figure 2:

5.1.4. Estimation method options

We want to use the Newey-West as the estimation method in order to correct for
autocorrelation, which consequently requires specifying that the option ”lag” in the
Newey-West command should depend on the horizon of the IRF in the following way:

locproj y l.y l(0/2).n l(0/3).r, h(12) met(newey) hopt(lag)

We can add any other existing methodological option corresponding to the method
introduced in the option met() simply by writing it down after the comma, as long as
that option has a different name to any of the existing locproj options. For instance,
we can include the option of no-constant term by adding the option noconstant:

locproj y l.y l(0/2).n l(0/3).r, h(12) met(newey) hopt(lag) noconstant

5.1.5. Displaying all the regression outputs
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Figure 2: IRF with negative starting horizon

If we want to take a look at the regression output for each of the horizons of the
IRF, we can use the options noisily and stats. The regression outputs displayed when
using the option noisily are not the exact outputs from whatever estimation method
we are using, but a simplified output table. The reason for this is that locproj uses
temporary variables whose given names do not have any meaning and would be difficult
to understand. locproj generates a new output table with variable names related to
the variable list defined by the user.

. locproj y l.y l(0/1).n l(0/1).r, h(-1/1) noisily
y_h(-1)

Coefficient Std. err. z P>|z| [95% conf. interval]

n
--. .1372814 .0635615 2.16 0.031 .0127032 .2618595
L1. .702149 .0658452 10.66 0.000 .5730949 .8312032

y
L2. -.0749726 .0525482 -1.43 0.154 -.1779652 .02802

r
--. -.054914 .1438184 -0.38 0.703 -.336793 .226965
L1. -.0084252 .1440649 -0.06 0.953 -.2907871 .2739367

_cons 2.508633 .3054069 8.21 0.000 1.910047 3.10722

y_h(0)

Coefficient Std. err. z P>|z| [95% conf. interval]

n
--. .8242872 .0639428 12.89 0.000 .6989616 .9496129
L1. -.1749075 .0742624 -2.36 0.019 -.3204592 -.0293558

y
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L1. .0288524 .0644984 0.45 0.655 -.0975622 .1552669

r
--. .0347293 .143932 0.24 0.809 -.2473722 .3168308
L1. -.0887312 .1441751 -0.62 0.538 -.3713092 .1938468

_cons 2.368041 .3182235 7.44 0.000 1.744335 2.991748

y_h(1)

Coefficient Std. err. z P>|z| [95% conf. interval]

n
--. .4231084 .084143 5.03 0.000 .2581912 .5880256
L1. -.2823765 .0975591 -2.89 0.004 -.4735888 -.0911642

y
L1. .1698436 .0846935 2.01 0.045 .0038474 .3358399

r
--. .1786659 .1890213 0.95 0.345 -.191809 .5491408
L1. -.2975255 .189286 -1.57 0.116 -.6685193 .0734683

_cons 2.896414 .419691 6.90 0.000 2.073834 3.718993

Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

-1 0.13728 0.06356 0.01206 0.26250
0 0.82429 0.06394 0.69832 0.95026
1 0.42311 0.08414 0.25734 0.58888

The stats option generates a table with each regression statistics for every horizon,
i.e. number of observations, R-squared or pseudo-R-squared, F-statistic or Chi2-statistic
and their respective p-values.

. locproj y l.y l(0/1).n l(0/1).r, h(-1/3) stats

Statistics by step

N R2 psR2 F Chi2 Prob

-1 242 0.528 . 52.81 . 0.000
0 243 0.526 . 52.58 . 0.000
1 242 0.183 . 10.57 . 0.000
2 241 0.116 . 6.18 . 0.000
3 240 0.026 . 1.24 . 0.286

Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

-1 0.13728 0.06356 0.01206 0.26250
0 0.82429 0.06394 0.69832 0.95026
1 0.42311 0.08414 0.25734 0.58888
2 0.30676 0.08771 0.13395 0.47957
3 0.01101 0.09229 -0.17082 0.19285

5.1.6. Use of the transformation options
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In this example we are going to estimate the IRF from a shock to the variable r
(FED funds rate) into the variable i (corporate bond interest rate (AAA)) using the
different transformation options. In order to express the result in percentage terms, we
also make use of the option fact() and we scale the response by a factor of 100.

We first need to generate the variables in logarithm and their differences to compare
the results:

gen lni = ln(i)

gen lnr = ln(r)

gen dlni = d.lni

gen dlnr = d.lnr

We first estimate the IRF using the two variables in logarithm:

locproj lni lnr, f(100) yl(2) sl(2)

But we can also estimate the same by using the option transf(logs) for the dependent
variable:

locproj i lnr, f(100) yl(2) sl(2) tr(logs)

We can estimate the model in differences by entering the log-difference as the de-
pendent variable:

locproj d.lni lnr, f(100) yl(2) sl(2)

However, we can also use the option transf(diff) with the dependent variable in logs:

locproj lni lnr, f(100) yl(2) sl(2) tr(diff)

Or we can use the option transf(logs diff) with the dependent variable in levels:

locproj i lnr, f(100) yl(2) sl(2) tr(logs diff)

For estimating the model in cumulative differences we can do it with both variables
in logarithm:

locproj lni lnr, f(100) yl(2) sl(2) tr(cmlt)

Which would be equivalent to estimate the model with the variable i in levels and
using the option tr(logs cmlt):

locproj i lnr, f(100) yl(2) sl(2) tr(logs cmlt)

5.1.7. Saving the IRF results into new variables

If we want to save the estimated IRF into a new variable that can be used later,
we can use it through the options saveirf and irfname(). If we just type saveirf,
locproj generates four (or six) new variables with the IRF, its standard error and
the confidence bands. locproj uses some predetermined default names to save the
corresponding variables (_irf, _seirf, _irf_lo and _irf_up)), but if we want to give



22 locproj

them a name of our preference (e.g. newirf), we can do it through the option irfname():

. locproj y l.y l(0/2).n l(0/3).r, h(12) met(newey) hopt(lag) saveirf

. locproj y l.y l(0/2).n l(0/3).r, h(12) met(newey) hopt(lag) save

irfname(newirf)

5.1.8. Some graph options

If we do not want locproj to produce a graph, we just have to type nograph:

. locproj y l(0/4).n l(0/4).r, h(12) m(newey) hopt(lag) yl(3) nograph

In the following example we are going to produce a graph in which a dashed-line with
the value of zero is included, we are going to give the graph the tittle ”LP Example”,
include a label ”Hours worked”, change the color of the IRF line and its confidence
interval to red instead of blue, and define the time axis as ”Number of Days”:

. locproj y l.y l(0/2).n l(0/3).r, h(12) met(newey) hopt(lag) zero

title("LP Example") label("Hours worked") lcolor(red)

ttitle("Number of quarters") conf(66 95)

Which generates the graph in Figure 3:
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Figure 3: IRF graph options

Next, we are going to give the graph a name, we are going to save it in a folder in
our disk as a png file named ”example1”:

. locproj y l.y l(0/2).n l(0/3).r, h(12) met(newey) hopt(lag) zero

title(LP Example) grname(Example1) grsave(C:\Documents\example1.png) as(png)

We can also add other graph options inside the gropt() option, for instance, and
we can define the labels of the y-axis and change the background color to white:

. locproj y l.y l(0/2).n l(0/3).r, h(12) met(newey) hopt(lag) zero
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title(LP Example) gropt(graphregion(fcolor(white)) ylabel(-0.25(0.25)1))

5.2 Interaction of a dummy variable with the shock, (State depen-
dent IRF)

We want to specify a different reaction to our shock variable before and after the global
financial crisis (GFC). We first need to generate two dummy variables. The first dummy
variable bef_gfc is equal to one before the first quarter of 2009 and zero afterwards,
meanwhile the second dummy variable aft_gfc is equal to one after the first quarter of
2009 and zero before that.

. gen bef_gfc = dateq<tq(2009q1)

. gen aft_gfc = dateq>=tq(2009q1)

We can also generate two interaction variables, i.e., the product of the dummy
variables times the shock variable n. The first interaction variable is equal to n before
the GFC and equal to zero afterwards. The second interaction variable is equal to zero
before the GFC and equal to n afterwards.

. gen n_bef = n*bef_gfc

. gen n_aft = n*aft_gfc

The estimated IRF after the GFC corresponds to the addition of the individual
coefficients of the variables n and n_aft. Thus we have to specify that the shock
corresponds to both variables, which is done by including both of them inside the option
shock(). locproj will take all the variables that are included in the shock() option
and add their individual effects:

. locproj y l.y l(0/3).r, s(n n_aft) sl(2) hor(12)

We are going to display the regression output of the first two steps, h = 0, 1, without
any other control variable so that it is easier to see how the coefficients of the two
variables are added:

. locproj y, s(n n_aft) hor(1) noi
y_h(0)

Coefficient Std. err. z P>|z| [95% conf. interval]

n .7901824 .0484706 16.30 0.000 .6951817 .8851831
n_aft -.4268065 .1410519 -3.03 0.002 -.7032631 -.1503498
_cons 2.063529 .1665531 12.39 0.000 1.737091 2.389967

y_h(1)

Coefficient Std. err. z P>|z| [95% conf. interval]

n .4041814 .0649363 6.22 0.000 .2769086 .5314541
n_aft -.3338654 .1917116 -1.74 0.082 -.7096133 .0418824
_cons 2.508294 .2234139 11.23 0.000 2.070411 2.946178
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Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

0 0.36338 0.13394 0.09953 0.62722
1 0.07032 0.18212 -0.28845 0.42908

We can also directly include the interaction between the dummy variable aft gfc
and the variable n inside the option shock(), but crucially, we have to specify in the
interaction that both variables are continuous even though the first one is a dummy, i.e.
c.aft_gfc#c.n, and we would get the same results:

. locproj y, s(n c.aft_gfc#c.n) hor(1) noi
y_h(0)

Coefficient Std. err. z P>|z| [95% conf. interval]

n .7901824 .0484706 16.30 0.000 .6951817 .8851831

c.aft_gfc#c.n -.4268065 .1410519 -3.03 0.002 -.7032631 -.1503498

_cons 2.063529 .1665531 12.39 0.000 1.737091 2.389967

y_h(1)

Coefficient Std. err. z P>|z| [95% conf. interval]

n .4041814 .0649363 6.22 0.000 .2769086 .5314541

c.aft_gfc#c.n -.3338654 .1917116 -1.74 0.082 -.7096133 .0418824

_cons 2.508294 .2234139 11.23 0.000 2.070411 2.946178

Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

0 0.36338 0.13394 0.09953 0.62722
1 0.07032 0.18212 -0.28845 0.42908

The interpretation of each individual coefficient is the following: the coefficient of the
variable n corresponds to the impact before the GFC, and the coefficient of the variable
n_aft (or c.aft_gfc#c.n) corresponds to the difference between the two periods.

Alternatively, we can use the interaction variable n bef to estimate the IRF resulting
from the shock variable n before the GFC in the following way:

. locproj y l.y l(0/3).r, s(n_bef n) sl(2) hor(12)

Which is equivalent to (using an interaction of two continuous variables):

. locproj y l.y l(0/3).r, s(c.bef_gfc#c.n n) sl(2) hor(12)

In this case, the IRF before the GFC corresponds to the addition of the individual
coefficients of the variables n and n bef, meanwhile the coefficient of the variable n
corresponds to the impact after the GFC, and the coefficient of the variable n_bef

corresponds to the difference between the two periods.
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5.3 Nonlinear effects and interactions: Using the option lcs()

We will replicate Example 5.2 but using the option lcs(). The use of the option lcs() is
equivalent to the use of the command lincom after estimating any regression command.
The expression that goes inside the parenthesis is analogous to any expression that is
tested using the commands lincom or test.

We are going to use the dummy variable aft_gfc that is equal to one after the first
quarter of 2009. But now we are going to use the factor variables syntax to specify
the shock, and thus, we will need to use the option lcs(), since the syntax of factor
variables could be more complicated, although sometimes more convenient to use.

The option lcs() allows us to specify the shock in any way we want, as long as it is
expressed as a linear combination of the variables included in the model specification.

In this case, the model specification includes both the variable n and the interaction
of the GFC dummy aft_gfc and the variable n. The interpretation of the coefficients of
each variable is the same as in Example 5.2, the coefficient of the variable n corresponds
to the response during the period preceding the GFC, meanhwile the coefficient of
the variable 1.aft_gfc#c.n corresponds to the difference in the response between the
two periods. Thus the total response after the GFC is equal to the sum of the two
coefficients. (In this specification the variable 0.aft_gfc#c.n is omitted).

. locproj y l(0/2)(n aft_gfc#c.n) l(0/3).r, ylags(1)

lcs(n+1.aft_gfc#c.n) noi

However, if we only include the interaction term between the dummy and the con-
tinuous variable, i.e., aft_gfc#c.n, then the response after the GFC is equal to the
coefficient of the variable 1.aft_gfc#c.n, meanwhile the response before the GFC is
equal to the coefficient of the variable 0.aft_gfc#c.n

IRF before the GFC:

. locproj y l(0/2)(aft_gfc#c.n) l(0/3).r, ylags(1) lcs(0.aft_gfc#c.n) noi

IRF after the GFC:

. locproj y l(0/2)(aft_gfc#c.n) l(0/3).r, ylags(1) lcs(1.aft_gfc#c.n) noi

5.4 More complicated nonlinear interactions: using lcs() or margins
options

If we want to estimate the response to a nonlinear shock, we need to take into account
that the estimated response might depend on the size of the shock, the level of the
interaction variable, and the shock variable initial level. Therefore, the estimation
depends on the coefficients and levels of more than one variable.

5.4.1. Quadratic terms

We are going to show how to estimate the case of the response when the shock
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includes a quadratic term, as defined in Equation (5). For instance, a quadratic term
of the variable n.

In Stata we can generate a new variable equal to the square of n:

gen n_2 = n^2

Alternatively, we can use an interaction term such as c.n#c.n. For simplicity of the
syntax, in this example we use the new generated variable n_2, but the result will be
exactly the same if we use c.n#c.n instead.

Since the shock is composed of two variables we are going to include both n and n_2

into the option shock() and we are going to write down the expression in Equation (5)
into the option lcs(), making βa

h equal to the estimated coefficient of n, βb
h equal to the

estimated coefficient of n_2. We first assume that the shock is equal to one, i.e. δ = 1
and δ2 = 1, and we are going to use as the initial level of the variable n, i.e. s0, equal
its estimated sample mean:

. sum n

. scalar nm=r(mean)

. locproj y, shock(n n_2) ylags(1) slags(2) controls(l(0/3).r) hor(12)

lcs(n*1+2*n_2*1*nm+n_2*1)

If we want to estimate the IRF for other values of the variable n, for instance for
n = 3 and n = 5, and thus, n2 = 9 and n2 = 25 we would need to change the expression
that goes into the option lcs():

. locproj y, shock(n n_2) ylags(1) slags(2) controls(l(0/3).r) hor(12)

lcs(n*3+2*n_2*3*nm+n_2*9)

. locproj y, shock(n n_2) ylags(1) slags(2) controls(l(0/3).r) hor(12)

lcs(n*5+2*n_2*5*nm+n_2*25)

We can also use the option margins, although it has some limitations. We cannot
use the option shock() with the two variables since margins can obtain the derivative
of only one variable. Since we are including lags of the shock, we need to change the
way in which we include the lags, making sure that specification includes the same lags
of both n and its quadratic term. We are also going to use the interaction c.n#c.n

instead of the variable n_2. We also need to use the option mropt() to specify that
the shock variable is evaluated at the desired initial level (s0), introducing the option
atmeans.

. locproj y l(0/2)(n c.n#c.n), ylags(1) controls(l(0/3).r) h(12)

margins mropt(atmeans)

5.4.2.Interaction with a continuous variable

In this example we will estimate an IRF when the shock interacts with another
continuous variable as in (9). The variable that interacts is e, the percent change in US
exchange rate. As in other examples we are only interested in this interaction as a way
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to show how to do it with locproj and not because its economic meaning or relevance.

This case is pretty similar to the one of a quadratic term, however in this case
the initial level of the shock variable s0 does not intervene. However, the idea of the
interaction is to evaluate the response at different levels of the variable e.

Initially, if in Equation (9) we assume that the size of the shock δ = 1 and we want
to estimate the response at a level of the variable e = 1, i.e. θ = 1, we just need to
include our shock variable n and the interaction term c.n#c.e in the option shock():

. locproj y, s(n c.n#c.e) ylags(1) sl(3) controls(l(0/3).r) hor(12)

However, if we want to estimate the response at other levels of the variable n, for
instance, at its sample mean, we need to use the option lcs():

. sum e

. scalar em=r(mean)

. locproj y l(0/3)(n c.n#c.e), ylags(1) controls(l(0/3).r) hor(12)

lcs( n + c.n#c.e*em)

We would obtain exactly the same result if we use the option margins in the following
way (3.1645 is the mean of e):

. locproj y l(0/3)(n c.n#c.e), ylags(1) controls(l(0/3).r) hor(12) margins

mropt(atmeans at(e=3.164551))

We can evaluate the IRF at different levels of the variable e (at different values of
θ). Evaluating the IRF at θ = 6 using the option lcs() would be given by:

. locproj y l(0/3)(n c.n#c.e), ylags(1) controls(l(0/3).r) hor(12)

lcs(n + c.n#c.e*6)

We would obtain exactly the same results using the option margins in the following
way:

. locproj y l(0/3)(n c.n#c.e), ylags(1) controls(l(0/3).r) hor(12)

margins mropt(atmeans at(e=6))

5.5 Example using Quantile Regression and LPGRAPH command

In this example we are going to estimate the IRF of the GDP growth rate to a shock in
the monetary policy interest rate r. We want to estimate the IFR for different quantiles
of the distribution of our dependent variable, using the quantile regression method qreg.

We want our shock variable to have an impact with a one period lag. However, the
qreg command does not allow the use of time-series operators. Thus we first need to
generate the variable rt−1 and using it as our shock variable:

. gen lr=l.r

Nevertheless, locproj has been adapted so that we can include lags of the dependent
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variable and the shock variable automatically even if the estimating method we are using
does not allow time-series operators. We can do it by using the options ylags() and
slags() respectively. For instance, in this example we want to include three lags of y
and of rt−1. Normally, if we are using qreg we would need to generate all these lagged
variables, but with locproj we can just write yl(3) and sl(3).

However, if we want to include lags of our control variables, we do need to do it by
hand, generating each one of the lagged-terms we want. In our example, we are going
to introduce three lags of the variable n:

. gen ln=l.n

. gen l2n=l2.n

. gen l3n=l3.n

We are going to estimate the IRF for three moments of the variable y distribution:
its mean, the 20th percentile, the median, and the 80th percentile. In all cases we use
a robust estimator of the variance-covariance matrix. For the average outcome, we use
OLS:

. locproj y lr n ln l2n l3n, yl(3) sl(3) h(-4/12) save irfn(Mean) r nograph

For the other moments of the distribution we use the command qreg:

. locproj y lr n ln l2n l3n, yl(3) sl(3) h(-4/12) m(qreg) q(20) nograph

save irfn(Q20) vce(r)

. locproj y lr n ln l2n l3n, yl(3) sl(3) h(-4/12) m(qreg) q(50) nograph

save irfn(Q50) vce(r)

. locproj y lr n ln l2n l3n, yl(3) sl(3) h(-4/12) m(qreg) q(80) nograph

save irfn(Q80) vce(r)

In all the cases we used the option ”nograph” since we want to compare the four
IRFs plotting them together in one graph using the command lpgraph. Therefore, we
have also used the options save and ifrname to save the results of each LP into some
variables that we can use.

Now we can create one graph with the four IRFs plotted together, while also choosing
the color of each one of the IRFs as in Figure 4:

. lpgraph Mean Q20 Q50 Q80, h(-4/12) tti(Quarters) lab1(OLS) lab2(Low - Q20)

lab3(Median) lab4(High - Q80) lc1(red) lc2(green) lc3(blue) lc4(brown)

title(Example of qreg & lpgraph, size(0.9)) z

We can also create four separate graphs and then combine them into a single graph.
To do so, we need to specify the option separate. In this case, we are giving each
separate graph a title, and therefore, we also specify the option nogelend. Additionally,
we are choosing the color red for the IRFs lines of the four graphs, as in Figure 5:

. lpgraph Mean Q20 Q50 Q80, h(-4/12) separate nolegend tti(Quarters)

ti1(OLS) ti2(Low - Q20) ti3(Median) ti4(High - Q80) lcolor(red)
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Figure 5: IRFs in separated graphs
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5.6 Instrumental Variables

We follow the example of the command ivlpirf in the Stata 19.0 manual and we use
data on US industrial production growth (ip growth), inflation rate (inflation), and the
interest rate (fedfunds) to estimate the effects of an interest rate increase on economic
activity and prices.

Following the example, we are concerned that the change in fedfunds is endogenous.
We have available an instrument, money inst, that captures monetary shocks. It is
correlated with change in fedfunds but uncorrelated with any nonmonetary shocks. We
use this variable as an instrument for the change in fedfunds.

In the following equation locproj interprets that the shock variable is ip growth
and we need to specify the instruments we want to use using the option instr. Initially,
we will only use the instrument money inst. We also need to specify which method we
want to use through the option met, which in this case is ivregress gmm. Notice that
in this case the met option should include the gmm sub-method.

. use usmacro3.dta

. locproj ip growth d.fedfunds, yl(2) sl(2) m(ivregress gmm)

instr(money inst)

If we have more available instruments we should include them in the instr option.
For example, we can also include the instrument variable oil instr. If our estimation
method is ivregress we can test whether we have overidentification at every step of the
LP. This can be done by using the option ivtest, which performs and displays one of
the three postestimation tests available after using the command ivregress, for each
step/horizon. For testing overindentifying restrictions we need to use the suboption
overid inside the option ivtest:

.

. locproj ip_growth d.fedfunds, ivtest(overid) instr(money_inst oil_inst) ///
> z h(0/2) yl(2) sl(2) m(ivregress gmm)
IV Test Step = 0

Test of overidentifying restriction:

Hansen´s J chi2(1) = 1.33844 (p = 0.2473)

IV Test Step = 1

Test of overidentifying restriction:

Hansen´s J chi2(1) = 5.57007 (p = 0.0183)

IV Test Step = 2

Test of overidentifying restriction:

Hansen´s J chi2(1) = 2.06762 (p = 0.1505)

Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

0 0.37225 0.23671 -0.09169 0.83620
1 0.32364 0.30674 -0.27755 0.92483
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2 0.15792 0.21822 -0.26978 0.58562

.

We can also use the suboption endogenous in ivtest to perform tests to determine
whether endogenous regressors in the model are in fact exogenous at every step:

.

. locproj ip_growth d.fedfunds, instr(money_inst) ivtest(endogenous) ///
> h(0/2) yl(2) sl(2) z m(ivregress gmm)
IV Test Step = 0

Test of endogeneity (orthogonality conditions)
H0: Variables are exogenous

GMM C statistic chi2(1) = .342906 (p = 0.5582)

IV Test Step = 1

Test of endogeneity (orthogonality conditions)
H0: Variables are exogenous

GMM C statistic chi2(1) = .763462 (p = 0.3822)

IV Test Step = 2

Test of endogeneity (orthogonality conditions)
H0: Variables are exogenous

GMM C statistic chi2(1) = .288881 (p = 0.5909)

Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

0 0.39021 0.23816 -0.07658 0.85700
1 0.36100 0.30897 -0.24456 0.96657
2 0.16297 0.21899 -0.26624 0.59219

.

We can also use the command ivqregress if we want to use instrumental-variables
quantile regression as our estimation method. In the same way as in the case of the
command qreg, we can specify lags of the dependent variable and the shock as options,
but we cannot use time-series operators in the main syntax. Then we would first need
to generate a new variable equal to the change in the fed funds rate, dfedfunds. We
also need to specify the submethod in the option met together with the command
ivqregress:

. gen dfedfunds = d.fedfunds

. locproj ip growth dfedfunds, yl(2) sl(2) m(ivqregress iqr)

instr(money inst)

5.7 Binary dependent variable: using the margins options

We are going to use the JST dataset and the "RecessionDummies" dataset that contains
data on recessions and financial crises:

. use "http://data.macrohistory.net/JST/JSTdatasetR5.dta"
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. merge 1:1 year iso using "RecessionDummies.dta", nogen

. xtset ifs year

We also need to drop WWI and WWII years from JST dataset:

. drop if year >=1914 & year <=1919

. drop if year >=1939 & year <=1947

In our first example, we will estimate the IRF of the probability of a banking crisis
to an increase in the US short-term interest rate. Our dependent variable in this case
is the dummy variable crisisJST that is equal to 1 for banking crises.

We need to generate a new variable stir_us with the US interest rate as a common
variable for all the countries in the sample, in order to estimate the response of the
probability of a banking crisis to the short-term interest rate in the US:

. gen stir_us0=stir if iso=="USA"

. egen stir_us=mean(stir_us0), by(year)

Now we are going to estimate the IRF using the option margins. The option margins
estimates the marginal effect of a unit of our shock variable (stir_us) on the proba-
bility of a banking crisis, which is our dependent (outcome) variable. We are using as
estimation method the command xtlogit with fixed effects:

. locproj crisisJST l(0/2).stir_us, margins m(xtlogit) fe

We can also interact the shock variable with a dummy variable, for instance, whether
a country has a ”PEG” foreign exchange regime.

The option margins allow us to estimate a separate IRF for each category of the
dummy variable PEG. To do that we need to use the option mrfvar(). In this option
we need to specify the expansion of the categorical variable that has been interacted
with our shock variable. We also need to use the explicit option to define which variable
is our shock without any interaction term, since the command margins does not accept
an interaction term expression in its dydx() option:

. locproj crisisJST peg#c.l(0/2).stir_us, s(stir_us) margins m(xtlogit)

fe mrfvar(1.peg)

. locproj crisisJST peg#c.l(0/2).stir_us, s(stir_us) margins m(xtlogit)

fe mrfvar(0.peg)

Alternatively, instead of entering the shock variable as peg#c.l(0/2).stir us in the
main syntax, we can enter the expression l(0/2).stir us peg#c.l(0/2).stir us and in this
way the command would use the variable stir us as the shock variable, without the need
to specify it through the option shock():

. locproj crisisJST l(0/2).stir_us peg#c.l(0/2).stir_us, margins m(xtlogit)

fe mrfvar(1.peg)

. locproj crisisJST l(0/2).stir_us peg#c.l(0/2).stir_us, margins m(xtlogit)
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fe mrfvar(0.peg)

5.8 D-i-D Event Study

As described in Section 2.9 we can use locproj to estimate an event study based on
the DiD estimator in the case where the treatment period is the same for all treated
individuals.

In this example, we have a dataset that contains a response variable y and a variable
d that is equal to one for a subset of individuals who were all treated in the year 2004.
The dataset also contains a set of dummy variables f01, f02,..., f06 that are equal to
one for the years 2001 to 2006 respectively.

Following Wooldridge (2021) we can estimate the Event Study regression without
covariates using the specification shown in Equation 13:

.

. use did_common_6, clear

. xtset id year

Panel variable: id (strongly balanced)
Time variable: year, 2001 to 2006

Delta: 1 unit

.

. reg y c.d#c.f01 c.d#c.f02 c.d#c.f04 c.d#c.f05 c.d#c.f06 d ///
> i.year, vce(cluster id)

Linear regression Number of obs = 3,000
F(11, 499) = 128.77
Prob > F = 0.0000
R-squared = 0.2022
Root MSE = 2.8893

(Std. err. adjusted for 500 clusters in id)

Robust
y Coefficient std. err. t P>|t| [95% conf. interval]

c.d#c.f01 -.5507778 .3096218 -1.78 0.076 -1.159101 .0575453

c.d#c.f02 -.3420594 .3340021 -1.02 0.306 -.998283 .3141643

c.d#c.f04 3.176513 .3660582 8.68 0.000 2.457307 3.895718

c.d#c.f05 4.894176 .3581913 13.66 0.000 4.190427 5.597925

c.d#c.f06 5.83863 .3515392 16.61 0.000 5.147951 6.52931

d -1.628416 .3403956 -4.78 0.000 -2.297201 -.9596306

year
2002 -.0423039 .146694 -0.29 0.773 -.330518 .2459102
2003 -.2627626 .1342313 -1.96 0.051 -.5264907 .0009655
2004 .6043256 .1397316 4.32 0.000 .3297907 .8788604
2005 .3253793 .1430212 2.28 0.023 .0443814 .6063772
2006 .5981061 .1549947 3.86 0.000 .2935834 .9026288
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_cons 20.33051 .1467731 138.52 0.000 20.04214 20.61888

.

All effects are measured relative to the period just before intervention, i.e., 2003.
The event-study coefficients are thus -0.551, -.342, 0, 3.177, 4.894, 5.839.

We can reproduce these results with locproj using Equation 12. We need to use
the option transf(cmlt) to obtain the long-term differencing. We need to define the
horizon period as hor(-3/2) since the coefficient of the period h = −1 is normalized to
zero and we want to evaluate two periods before the intervention h = −3,−2 and three
periods after the intervention h = 0, 1, 2.

We also need to have a variable that is equal to one only for treated individuals and
only after the intervention, i.e., from 2004 onward, which we are going to call treat.
Following Equation 12 again, our shock variable is the change in this new variable
d.treat:

. gen treat=year>=2004 & d

. locproj y d.treat i.year, tr(cmlt) vce(cluster id) h(-3/2) z gropt(xline(-1, lc(gray)))

Impulse Response Function

IRF Std.Err. IRF LOW IRF UP

-3 -0.55078 0.30936 -1.15712 0.05556
-2 -0.34206 0.33372 -0.99614 0.31203
-1 0.00000 0.00000 0.00000 0.00000
0 3.17651 0.36575 2.45965 3.89337
1 4.89418 0.35789 4.19272 5.59563
2 5.83863 0.35125 5.15020 6.52706

We also included the necessary options to display lines at period = 0 and at y = 0
as can be seen in Figure 6:
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Figure 6: Event Study graph
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requirements and operating conditions for investment firms and defined terms for the purposes of that Directive (MIFID II). 

Readers should be aware that under no circumstances should they base their investment decisions on the information 
contained in this document. Those persons or entities offering investment products to these potential investors are legally 
required to provide the information needed for them to take an appropriate investment decision. 

This document has been prepared by BBVA Research Department. It is provided for information purposes only and expresses 
data or opinions regarding the date of issue of the report, prepared by BBVA or obtained from or based on sources we 
consider to be reliable, and have not been independently verified by BBVA. Therefore, BBVA offers no warranty, either 
express or implicit, regarding its accuracy, integrity or correctness. 

This document and its contents are subject to changes without prior notice depending on variables such as the economic 
context or market fluctuations. BBVA is not responsible for updating these contents or for giving notice of such changes. 

BBVA accepts no liability for any loss, direct or indirect, that may result from the use of this document or its contents. 

This document and its contents do not constitute an offer, invitation or solicitation to purchase, divest or enter into any interest 
in financial assets or instruments. Neither shall this document nor its contents form the basis of any contract, commitment or 
decision of any kind. 

The content of this document is protected by intellectual property laws. Reproduction, transformation, distribution, public 
communication, making available, extraction, reuse, forwarding or use of any nature by any means or process is prohibited, 
except in cases where it is legally permitted or expressly authorised by BBVA on its website www.bbvaresearch.com.
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