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WHAT ARE LOCAL PROJECTIONS?
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Description of the problem

Objective

Rsy(h, s0, δ) ≡ E(yt+h|st = s0 + δ; xt)− E(yt+h|st = s0, xt)

yt+h outcome
st treatment, intervention, etc
s0 control level for the intervention (only relevant in NL settings)
δ size of intervention
xt controls. May include lags of y, s, and other variables.
h = 0, 1, . . . ,H− 1
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Intuition: suppose st ∈ {0, 1} and randomly assigned

Difference in means

R̂sy(h) =
∑T

t=h yt+h st∑T
t=h st

−
∑T

t=h yt+h (1− st)∑T
t=h(1− st)

= yh1 − yh0

or in regression form:

yt+h = αh + βhst + ut+h → β̂h = yh1 − yh0
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Local projection

Idea: approximate E(yt+h|st, xt) with yt+h = m(st, xt) + ut+h, for example:

yt+h = αh + βhst + γhxt + ut+h

recall:

Rsy(h, s0, δ) ≡ E(yt+h|st = s0 + δ; xt)− E(yt+h|st = s0, xt)
= m(s0 + δ, xt)−m(s0, xt)

hence:

Rsy(h, s0, δ) = (αh + βh(s0 + δ) + γhxt)− (αh + βhs0 + γhxt) = βhδ
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Suppose DGP is a VAR(1)
Consider wt = Φwt−1 + ut (e.g. wt = (yt, st, x′t)′). By recursive substitution:

wt+h = Φh+1wt−1 + ut+h + Φut+h−1 + . . .+Φhut︸ ︷︷ ︸
vt+h ∼MA(h)

Clearly:

∂wt+h

∂ut
= Φh = R(h);

Two ways to estimate R(h):

wt = Φwt−1 + ut︸ ︷︷ ︸
VAR

→ (Φ̂)h; or wt+h−1 = Bhwt−1 + vt+h︸ ︷︷ ︸
local projection

→ B̂h
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Remarks on local projection inference

response s.e. direct from regression (no delta method approx.)

MA(h) residuals (requires correction, no effect on consistency)

responses correlated across horizons (matters for joint inference)

truncation of infinite order DGPs (matters for consistency)

unit or near to unit roots small sample inference distortions

local projections and VARs imply a bias-variance trade-off
(just like IV and OLS). Or do they?
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WHAT IS THE GOAL OF IMPULSE RESPONSE INFERENCE?
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1 A natural hypothesis is absence of a treatment effect, i.e.:

H0 : β0 = . . . = βH = 0

But this is not usually reported, instead...

2 report confidence bands: uncertainty about individual coefficients:

H0 : β = 0; . . . ;H0 : βH = 0

3 could also care about a subset of coefficients, but very rarely done,
e.g.:

H0 : βj = . . . = βj+k > 0 fot j ≥ k, j, k ∈ {0, 1, . . . ,H}

Clearly 1 ̸= 2 but 2 often used to say something about 1
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Some results in the literature
Not comprehensive

Jordà (2005): fix MA(h) error structure using Newey-West correction

Montiel-Olea and Plagborg-Møller (2021): use lag augmentation
Then only need heteroscedasticity robust standard errors
Uniformly valid for ϕ ∈ [−1, 1]

Lusompa (2023): use GLS to parametrically fix MA(h) error structure

Bruns and Lütkepohl (2022): lag augmentation + GLS

Xu (2023): uniform asymptotic theory model’s lag order unknown, possibly∞
LPs are semiparametrically efficient as lag → ∞
improved inference for unknown heteroscedasticity

Jordà (2009)/Montiel-Olea and Plagborg-Møller (2019):
on joint inference bounds based on Scheffé/sup-t procedure
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Simulation-based inference and panels
Bootstrap:

non-parametric: block wild bootstrap, e.g. Lusompa (2023)
parametric: Gadea-Rivas and Jordà (2024) based on Paparoditis (1996)

Bayesian:
Tanaka (2020)
Ferreira, Miranda-Agrippino and Ricco (2024)

Panels:
If T → ∞, for N fixed or growing slowly: Driscoll-Kraay (1998)
If N → ∞, with T fixed, cluster-robust
If N → ∞, with T small, boostrap cluster-robust
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SIGNIFICANCE BANDS
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Motivation: typical confidence bands
Response of the CPI price level to a Romer shock: 1969Q1–2007Q4
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p-value of joint significance test:     2.18e-19

What is the correct interpretation?
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Remarks

Traditional confidence bands obtained from t-statistic inversion

Danger: visual seems to indicate response is not significant ...

... but joint hypothesis test rejects significance null

Formal joint test requires estimation of system of horizons...
inconvenient?

Is there a simpler way to assess statistical significance?

Of course, always important to assess economic significance
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An alternative/complement: significance bands

Idea:
use the LM principle
no need to estimate the model (under the null, there is no response)
similar to ACF significance bands: ±1.96/

√
T

bootstrap procedure easy to implement
significance bands are conservative (Bonferroni bound)
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Estimation using local projections
Omitting xt for simplicity, and/or appeal Frisch-Waugh-Lovell

yt+h = stβh + ut+h for h = 0, 1, . . . ,H− 1; t = 1, . . . , T

zt instrumental variable (could be st if exogenous)

Stock and Watson (2018) assumptions:

Relevance: E(st zt) ̸= 0.

Lead-lag exogeneity: E(ut+h zt) = 0 ∀h.

Exclusion restriction: E(yt+h zt|st) = 0.
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Focusing on the IV estimator

√
T− h(β̂h − βh) =

(T− h)−1/2∑n
1 zt yt+h

(T− h)−1∑n
1 zt st

As usual:

1
T− h

n∑
1
zt st = γ̂sz

p→ γzs = E(zt st) (denominator)

At H0 : βh = 0:

1
(T− h)1/2

n∑
1
zt yt+h

d→ N(0, ω) (numerator)
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Putting the LM principle to work
Under H0 : βh = 0 and lead-lag exogeneity

ω = Var
(

1
(T− h)1/2

n∑
1
zt yt+h

)
≈

∞∑
j=−∞

E(zt yt+h zt−j yt+h−j)

H0 : βh = 0 & lead-lag exogeneity =
∞∑

j=−∞

E(zt zt−j)E(yt+h yt+h−j)

=
∞∑

j=−∞

γz,j γy,j

√
T− h(β̂h − 0) d→ N(0, σ2); σ2 =

∑∞
j=−∞ γz,jγy,j

γ2
zs

=
ω

γ2
zs
; ∀h
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Theoretical significance bands
Based on Dunn (1961) and using a Bonferroni bound, the bands are:

[
ζα/2H

σ√
T− h

, ζ1−α/2H
σ√
T− h

]
.

since:

P
(H−1⋂

h=0

{
ζα/2H

σ√
T− h

< β̂h < ζ(1−α/2H)
σ√
T− h

})
≥ 1− α

When y = s = z, under the null γy,0 = γs,0 =⇒ σ2 = 1
The LP is an estimate of the ACF:

√
T(ρ̂− 0) d→ N(0, 1) =⇒ band: ± 1.96/

√
T
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Analytical computation in small samples
1 Calculate the sample average of the product st zt. Call this γ̂sz.
2 Construct the auxiliary variable ηt = yt zt and regress ηt on a constant.

The Newey-West estimate of the standard error of the intercept
coefficient is an estimate of sη̂ .

3 An estimate of σ/
√
T− h , call it ŝβh , is therefore:

ŝβh =
ŝη̂
γ̂sz

4 Construct the significance bands as:

[
ζα/2Hŝβh , ζ1−α/2Hŝβh

]
where

∫ ζ1−α/2

ζα/2

ϕ(x)dx = 1− α
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Significance bands using the Wild-Block Bootstrap

1 Calculate the sample average of st zt. Call this γ̂sz.
2 Construct the auxiliary variable ηt = yt zt and regress ηt on a constant.

The Wild Block bootstrap estimate of the standard error of the
intercept coefficient is an estimate of sη̂ .

3 An estimate of σ/
√
T− h , call it ŝbβh , is therefore:

ŝbβh =
ŝbη̂
γ̂sz

4 Construct the significance bands as:[
ζ̂α/2Hŝbβh , ζ̂1−α/2Hŝbβh

]
ζ̂α/2H, ζ1−α/2H empirical quantiles
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Response of the CPI price level to a Romer shock
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Red: bootstrap bands; Blue: analytical bands
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Takeaways
Why use significance bands?

s-bands are very easy to obtain. Avoids system estimation
s-bands are a natural complement to confidence bands
system estimation needed for formal multiple hypothesis testing
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Summary

Appropriate inference depends on the context
Many tools now available
Bias-variance trade-off increasingly tilting toward LPs
Inference depends on the question posed

Always remember:

statistical significance ⇐⇒/ economic significance
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